## The exact solution of the Schrödinger equation with a polynomially spatially varying mass

**Bednarik, M., Cervenka, M.: The exact solution of the Schrödinger equation with a polynomially spatially varying mass, Journal of Mathematical Physics 58, 072103, 2017**

**Apstract:** The Schrödinger equation with a position-dependent mass (SEPDM) is employed in many areas of quantum physics. Exact solutions for the SEPDM lie at the center of interest of the professional public because it helps us to understand the behavior of quantum particles in the cases in which their mass varies spatially. For this purpose, we used the mass function represented by a quartic polynomial and a quadratic potential function, which extends the current class of exact solutions of the SEPDM. The exact analytical solution of the problem is expressed as a linear combination of local Heun functions. Heun’s equation contains many parameters, resulting in its general nature. We studied how limit changes in some of these parameters will affect the solution of the SEPDM. The obtained solutions are particularly suitable for the transfer matrix method and solutions of scattering problems; this is demonstrated by the calculation of bound states.